Electrophysiological and morphological properties of cell types in the chick neostriatum caudolaterale.
نویسندگان
چکیده
The neostriatum caudolaterale, in the chick also referred to as dorsocaudal neostriatal complex, is a polymodal associative area in the forebrain of birds that is involved in sensorimotor integration and memory processes. We have used whole-cell patch-clamp recordings in chick brain slices to characterize the principal cell types of the neostriatum caudolaterale. Electrophysiological properties distinguished four classes of neurons. The morphological characteristics of these classes were examined by intracellular injection of Lucifer Yellow. Type I neurons characteristically fired a brief burst of action potentials. Morphologically, type I neurons had large somata and thick dendrites with many spines. Type II neurons were characterized by a repetitive firing pattern with conspicuous frequency adaptation. Type II neurons also had large somata and thick dendrites with many spines. There was no clear morphological distinction between type I and type II neurons. Type III neurons showed high-frequency firing with little accommodation and a prominent time-dependent inward rectification. They had thin, sparsely spiny dendrites and extensive local axonal arborizations. Electrophysiological and morphological properties indicated them as being interneurons. Type IV neurons had a longer action potential duration, a larger input resistance, and a longer membrane time constant than the other classes. Type IV neurons had small somata and short dendrites with few spines. The long axon collaterals of neurons in all spiny cell classes (types I, II, IV) followed similar patterns, suggesting that neurons from all these types can contribute to the projections of the neostriatum caudolaterale to sensory, limbic and motor areas. The electrophysiological and anatomical characterization of the major classes of neurons in the caudal forebrain of the chick provides a framework for the investigation of sensorimotor integration and learning at the cellular level in birds.
منابع مشابه
Postnatal development of the rat neostriatum: electrophysiological, light- and electron-microscopic studies.
The postnatal development of the electrophysiological properties and morphology of rat neostriatum was studied using in vivo and in vitro intracellular recording and biocytin staining and light and electron microscopy. The principal neurons, the medium spiny neurons, were found to undergo a protracted postnatal development of their electrophysiological and morphological characteristics. Most of...
متن کاملSelective deficits in reversal learning after neostriatum caudolaterale lesions in pigeons: possible behavioral equivalencies to the mammalian prefrontal system.
The neostriatum caudolaterale (NCL) of birds is thought to be equivalent to the mammalian prefrontal cortex (PFC) due to its dense dopaminergic innervation, its associative structure, and its importance for cognitive tasks which are known to be affected in mammals with prefrontal lesions. The aim of the present study was to analyze the functional importance of the NCL and its main thalamic affe...
متن کاملAntibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture
Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...
متن کاملThe Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus
Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...
متن کاملThe Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus
Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience
دوره 110 3 شماره
صفحات -
تاریخ انتشار 2002